Spontaneous fluctuations in cerebral blood flow: insights from extended-duration recordings in humans.

نویسندگان

  • R Zhang
  • J H Zuckerman
  • B D Levine
چکیده

To determine the dependence of cerebral blood flow (CBF) on arterial pressure over prolonged time periods, we measured beat-to-beat changes in mean CBF velocity in the middle cerebral artery (transcranial Doppler) and mean arterial pressure (Finapres) continuously for 2 h in six healthy subjects (5 men and 1 woman, 18-40 yr old) during supine rest. Fluctuations in velocity and pressure were quantified by the range [(peak - trough)/mean] and coefficients of variation (SD/mean) in the time domain and by spectral analysis in the frequency domain. Mean velocity and pressure over the 2-h recordings were 60 +/- 7 cm/s and 83 +/- 8 mmHg, associated with ranges of 77 +/- 8 and 89 +/- 10% and coefficients of variation of 9.3 +/- 2.2 and 7.9 +/- 2.3%, respectively. Spectral power of the velocity and pressure was predominantly distributed in the frequency range of 0.00014-0.1 Hz and increased inversely with frequency, indicating characteristics of an inverse power law (1/f(alpha)). However, linear regression on a log-log scale revealed that the slope of spectral power of pressure and velocity was steeper in the high-frequency (0.02-0.5 Hz) than in the low-frequency range (0.002-0.02 Hz), suggesting different regulatory mechanisms in these two frequency ranges. Furthermore, the spectral slope of pressure was significantly steeper than that of velocity in the low-frequency range, consistent with the low transfer function gain and low coherence estimated at these frequencies. We conclude that 1) long-term fluctuations in CBF velocity are prominent and similar to those observed in arterial pressure, 2) spectral power of CBF velocity reveals characteristics of 1/f(alpha), and 3) cerebral attenuation of oscillations in CBF velocity in response to changes in pressure may be more effective at low than that at high frequencies, emphasizing the frequency dependence of cerebral autoregulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AHEART June 47/6

Zhang, Rong, Julie H. Zuckerman, and Benjamin D. Levine. Spontaneous fluctuations in cerebral blood flow: insights from extended-duration recordings in humans. Am J Physiol Heart Circ Physiol 278: H1848–H1855, 2000.—To determine the dependence of cerebral blood flow (CBF) on arterial pressure over prolonged time periods, we measured beat-to-beat changes in mean CBF velocity in the middle cerebr...

متن کامل

Spontaneous fluctuations in cerebral blood flow regulation: contribution of PaCO2.

To investigate the temporal variability of dynamic cerebral autoregulation (CA), the transient response of cerebral blood flow to rapid changes in arterial blood pressure, a new approach was introduced to improve the temporal resolution of dynamic CA assessment. Continuous bilateral recordings of cerebral blood flow velocity (transcranial Doppler, middle cerebral artery), end-tidal Pco(2) (Pet(...

متن کامل

Spontaneous Intracranial Hypotension Plus Cerebral Venous Thrombosis: A Case Report Study

This is a case study of a 34-year-old woman who was admitted to hospital with a history of severe orthostatic headache. She was diagnosed as having spontaneous intracranial hypotension (SIH) by undetectable cerebrospinal fluid (CSF) pressure at lumbar puncture, and with evidence of diffuse dural enhancement of the brain detected by magnetic resonance imaging (MRI). However, the contrast-enhance...

متن کامل

The relationship of blood flow velocity fluctuations to intracranial pressure B waves.

Intracranial pressure (ICP) and continuous transcranial Doppler ultrasound signals were monitored in 20 head-injured patients and simultaneous synchronous fluctuations of middle cerebral artery (MCA) velocity and B waves of the ICP were observed. Continuous simultaneous monitoring of MCA velocity, ICP, arterial blood pressure, and expired CO2 revealed that both velocity waves and B waves occurr...

متن کامل

Fractal and noisy CBV dynamics in humans: influence of age and gender.

The complexity of spontaneous cerebral blood volume (CBV) fluctuations can emerge from random, fractal, or chaotic processes. Our aims were to define the contribution of these patterns to the observed complexity and to evaluate the effect of age and gender on it. The total hemoglobin content as the measure of CBV was monitored by near-infrared spectroscopy on volunteers (men n = 19, age = 20 to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 278 6  شماره 

صفحات  -

تاریخ انتشار 2000